40 MATHEMATICS

Solution: As you know, q(t) will be a multiple of 2t + 1 only, if 2t + 1 divides q(t) leaving remainder zero. Now, taking 2t + 1 = 0, we have $t = -\frac{1}{2}$.

Also,
$$q\left(-\frac{1}{2}\right) = 4\left(-\frac{1}{2}\right)^3 + 4\left(-\frac{1}{2}\right)^2 - \left(-\frac{1}{2}\right) - 1 = -\frac{1}{2} + 1 + \frac{1}{2} - 1 = 0$$

So the remainder obtained on dividing q(t) by 2t + 1 is 0.

So, 2t + 1 is a factor of the given polynomial q(t), that is q(t) is a multiple of 2t + 1.

EXERCISE 2.3

- 1. Find the remainder when $x^1 + 3x^2 + 3x + 1$ is divided by
 - (i) x + 1
- (ii) $x-\frac{1}{2}$

(iii) x

(iv) $x + \pi$

- (v) 5 + 2x
- 2. Find the remainder when $x^3 ax^2 + 6x a$ is divided by x a.
- 3. Check whether 7 + 3x is a factor of $3x^3 + 7x$.

2.5 Factorisation of Polynomials

Let us now look at the situation of Example 10 above more closely. It tells us that since the remainder, $q\left(-\frac{1}{2}\right) = 0$, (2t + 1) is a factor of q(t), i.e., q(t) = (2t + 1) g(t)

for some polynomial g(t). This is a particular case of the following theorem.

Factor Theorem : If p(x) is a polynomial of degree $n \ge 1$ and a is any real number, then

- (i) x a is a factor of p(x), if p(a) = 0, and
- (ii) p(a) = 0, if x a is a factor of p(x).

This actually follows immediately from the Remainder Theorem, but we shall not prove it here. However, we shall apply it quite a bit, as in the following examples.

Example 11: Examine whether x + 2 is a factor of $x^3 + 3x^2 + 5x + 6$ and of 2x + 4.

Solution: The zero of x + 2 is -2. Let $p(x) = x^3 + 3x^2 + 5x + 6$ and s(x) = 2x + 4Then, $p(-2) = (-2)^3 + 3(-2)^2 + 5(-2) + 6$